Exercise 9.7.2

Separate variables in the thermal diffusion equation of Exercise 9.7.1 in circular cylindrical coordinates. Assume that you can neglect end effects and take $T=T(\rho, t)$.

Solution

The thermal diffusion equation of Exercise 9.7.1 is

$$
\frac{\partial T}{\partial t}=K \nabla^{2} T
$$

Expand the Laplacian operator in circular cylindrical coordinates (ρ, φ, z).

$$
\frac{\partial T(\rho, t)}{\partial t}=K[\frac{1}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial T(\rho, t)}{\partial \rho}\right)+\underbrace{\frac{1}{\rho^{2}} \frac{\partial^{2} T(\rho, t)}{\partial \varphi^{2}}}_{=0}+\underbrace{\frac{\partial^{2} T(\rho, t)}{\partial z^{2}}}_{=0}]
$$

T is only a function of ρ and t, so the angular derivatives vanish.

$$
\frac{\partial T}{\partial t}=\frac{K}{\rho} \frac{\partial}{\partial \rho}\left(\rho \frac{\partial T}{\partial \rho}\right)
$$

The equation of heat conduction is linear and homogeneous, so the method of separation of variables can be applied to solve it. Assume a product solution of the form $T(\rho, t)=P(\rho) \Theta(t)$ and substitute it into the PDE.

$$
\begin{aligned}
\frac{\partial}{\partial t}[P(\rho) \Theta(t)] & =\frac{K}{\rho} \frac{\partial}{\partial \rho}\left[\rho \frac{\partial}{\partial \rho}[P(\rho) \Theta(t)]\right] \\
P \frac{d \Theta}{d t} & =\Theta \frac{K}{\rho} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)
\end{aligned}
$$

Divide both sides by $K P(\rho) \Theta(t)$. (The final answer for $T(\rho, t)$ will be the same regardless which side K is on.)

$$
\underbrace{\frac{1}{K \Theta} \frac{d \Theta}{d t}}_{\text {function of } t}=\underbrace{\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)}_{\text {function of } \rho}
$$

The only way a function of t can be equal to a function of ρ is if both are equal to a constant λ.

$$
\frac{1}{K \Theta} \frac{d \Theta}{d t}=\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)=\lambda
$$

As a result of applying the method of separation of variables, the equation of conduction has reduced to two ODEs - one in ρ and one in t.

$$
\left.\begin{array}{r}
\frac{1}{K \Theta} \frac{d \Theta}{d t}=\lambda \\
\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)
\end{array}\right\}
$$

Solve the first ODE for Θ.

$$
\frac{d \Theta}{d t}=K \lambda \Theta
$$

The general solution is written in terms of the exponential function.

$$
\Theta(t)=C_{1} e^{K \lambda t}
$$

In order for $T(\rho, t)$ to remain bounded as $t \rightarrow \infty$, we require that λ be either zero or negative. Suppose first that λ is zero: $\lambda=0$. The ODE for P becomes

$$
\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)=0
$$

Multiply both sides by ρP.

$$
\frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)=0
$$

Integrate both sides with respect to ρ.

$$
\rho \frac{d P}{d \rho}=C_{2}
$$

Divide both sides by ρ.

$$
\frac{d P}{d \rho}=\frac{C_{2}}{\rho}
$$

Integrate both sides with respect to ρ once more.

$$
P(\rho)=C_{2} \ln \rho+C_{3}
$$

Note that this is the steady-state temperature profile in a cylindrical geometry. With two boundary conditions, one could determine the constants, C_{2} and C_{3}. Suppose secondly that λ is negative: $\lambda=-\alpha^{2}$. The ODE for P becomes

$$
\frac{1}{\rho P} \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)=-\alpha^{2}
$$

Multiply both sides by $\rho^{2} P$.

$$
\rho \frac{d}{d \rho}\left(\rho \frac{d P}{d \rho}\right)=-\alpha^{2} \rho^{2} P
$$

Use the product rule to expand the left side.

$$
\rho\left(\rho \frac{d^{2} P}{d \rho^{2}}+\frac{d P}{d \rho}\right)=-\alpha^{2} \rho^{2} P
$$

The radial equation is thus

$$
\rho^{2} \frac{d^{2} P}{d \rho^{2}}+\rho \frac{d P}{d \rho}+\alpha^{2} \rho^{2} P=0
$$

which is known as the Bessel equation of order zero. Its general solution is written in terms of J_{0} and Y_{0}, the Bessel functions of the first and second kind, respectively.

$$
P(\rho)=C_{4} J_{0}(\alpha \rho)+C_{5} Y_{0}(\alpha \rho)
$$

